0=-16t^2+3016.82t+132000

Simple and best practice solution for 0=-16t^2+3016.82t+132000 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+3016.82t+132000 equation:



0=-16t^2+3016.82t+132000
We move all terms to the left:
0-(-16t^2+3016.82t+132000)=0
We add all the numbers together, and all the variables
-(-16t^2+3016.82t+132000)=0
We get rid of parentheses
16t^2-3016.82t-132000=0
a = 16; b = -3016.82; c = -132000;
Δ = b2-4ac
Δ = -3016.822-4·16·(-132000)
Δ = 17549202.9124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3016.82)-\sqrt{17549202.9124}}{2*16}=\frac{3016.82-\sqrt{17549202.9124}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3016.82)+\sqrt{17549202.9124}}{2*16}=\frac{3016.82+\sqrt{17549202.9124}}{32} $

See similar equations:

| x/(x+1)=0.93 | | x/(x-1)=0.93 | | 64=188=-w | | 32=h+1/2 | | 93-y=198 | | -y+157=33 | | Y=0.6x+22.25 | | -1.8x=-8.48 | | x=1/2(30+(2x-30) | | 360=30b | | 10=x/3.2 | | 20/100*x=2600 | | 7x+3=6x+13 | | 2(3r-1)=76 | | (x+27)+(2x+7)=180 | | 5=-5x+3+2 | | 32=2+6z | | 10c-19c+14c=30 | | 3(4r-3)=39 | | 5x-10+3x-4=-38 | | 4x+3(5x-2)=25 | | 3+-6q=7q+10 | | x^2+4x/x+2=3x/3 | | -46=12+x | | 4(9x-5)+40=10 | | x+(x-14)=58 | | y-9.97=8.1 | | w-2.2=8.3 | | 20x-2=-8 | | 11/9+n=2/9 | | 7(x+8)=-4 | | 3x+(5-2x)=x-8 |

Equations solver categories